在本文中,我们制定了在内核强盗问题(COPE-KB)中的协作纯探索,它为在有限的通信和一般奖励函数下提供了一种用于多智能组件多任务决策的新型模型,并且适用于许多在线学习任务,例如,推荐系统和网络调度。我们考虑两个COPE-KB,即固定信道(FC)和固定预算(FB)的设置,以及设计两个最佳算法COOPKERNECC(FC)和Coopkerhelfb(FB)。我们的算法配备了创新和高效的核化估计,同时实现了计算和通信效率。建立统计和通信度量标准下的上限和下限以证明我们算法的最优性。理论界限成功地量化了任务相似性对学习加速度的影响,并且只取决于内核特征空间的有效维度。我们的分析技术,包括数据尺寸分解,线性结构化实例转换和(通信)圆形加速感应,是新颖的,适用于其他强盗问题。提供了实证评估以验证我们的理论结果,并展示我们算法的性能优势。
translated by 谷歌翻译
While natural systems often present collective intelligence that allows them to self-organize and adapt to changes, the equivalent is missing in most artificial systems. We explore the possibility of such a system in the context of cooperative object manipulation using mobile robots. Although conventional works demonstrate potential solutions for the problem in restricted settings, they have computational and learning difficulties. More importantly, these systems do not possess the ability to adapt when facing environmental changes. In this work, we show that by distilling a planner derived from a gradient-based soft-body physics simulator into an attention-based neural network, our multi-robot manipulation system can achieve better performance than baselines. In addition, our system also generalizes to unseen configurations during training and is able to adapt toward task completions when external turbulence and environmental changes are applied.
translated by 谷歌翻译